Some common pairs – z – transform formulas

Some common pairs

\( x(t) \) \( X(Z) \)
\( \delta \) \( 1 \)
\( u(n) \) \( \frac {Z}{Z-1} \)
\( u(-n-1) \) \( -\frac {Z}{Z-1} \)
\( \delta(n-m) \) \( z^{-m} \)
\( a^nu[n] \) \( \frac {Z}{Z-a} \)
\( a^nu[-n-1] \) \( -\frac {Z}{Z-a} \)
\( na^nu[n] \) \( \frac {aZ}{|Z-a|^2} \)
\( na^nu[-n-1] \) \( -\frac {aZ}{|Z-a|^2} \)
\( a^n\cos \omega nu[n] \) \( \frac {Z^2-aZ\cos \omega}{Z^2-2aZ\cos \omega+a^2} \)
\( a^n\sin \omega nu[n] \) \( \frac {aZ\sin \omega}{Z^2-2aZ\cos \omega+a^2} \)
\( nu(n) \) \( \frac {Z^{-1}}{(1-Z^{-1})^3} \)
\( u(n-1) \) \( Z^{-1}\frac {1}{(1-Z^{-1})} \)
\( \delta(n+m) \) \( z^m \)

Example:

Find z-transform of the following sequence x(n)=10 sin (0.25πn)u(n)

Solution:

$$ X(z)=10Z (\sin (0.25\pi n)u(n)) $$
$$ X(z)= \frac {10 \sin (0.25\pi)z}{z^2-2z\cos (0.25\pi)+1} $$
$$ X(z)= \frac {7.07z}{z^2-1.414z+1} $$

$$ $$
$$ $$
$$ $$
$$ $$
$$ $$
$$ $$

Leave a Reply