Properties of Laplace transform

Properties of Laplace transform

1. Linearity Property

$$ A f_1(t) + B f_2(t) \longleftrightarrow A F_1(s) + B F_2(s) $$

2. Frequency Shifting Property

$$ e^{s_0t} f(t)) \longleftrightarrow F(s – s_0) $$

3. nth Derivative Property

$$ \frac {d^n f(t)}{dt^n} \longleftrightarrow s^n F(s) − \sum_{i=0}^n s^{n − i} f^{i − 1} (0^−) $$

4. Integration

$$ \int\limits_0^t f(\lambda) \ d\lambda \longleftrightarrow \frac 1s F(s) $$

5. Multiplication by Time

$$ T f(t) \longleftrightarrow −\frac {d F(s)}{ds} $$

6. Complex Shift Property

$$ f(t) e^{−at} \longleftrightarrow F(s + a) $$

7. Time Reversal Property

$$ f (-t) \longleftrightarrow F(-s) $$

8. Time Scaling Property

$$ f \left(\frac ta\right) \longleftrightarrow a F(as) $$

Leave a Reply