Product-to-Sum Identities Post author:algebra-calculators.com Post published:October 29, 2021 Post category:Trigonometry formulas Post comments:0 Comments Product-to-Sum Identities 1. sinα·sinβ=12cos(α–β)–cos(α+β) 2. cosα·cosβ=12cos(α–β)+cos(α+β) 3. sinα·cosβ=12sin(α+β)+sin(α–β) 4. cosα·sinβ=12sin(α+β)–sin(α–β) 5. tanα·tanβ=(tanα+tanβ)(cotα+cotβ) 6. cotα·cotβ=(cotα+cotβ)(tanα+tanβ) 7. tanα·cotβ=(tanα+cotβ)(cotα+tanβ) Example: Write cos 3x cos 2x as a sum Solution: cosα·cosβ=12[cos(α–β)+cos(α+β)] cos3x·cos2x=12[cos(3x–2x)+cos(3x+2x)] cos3x·cos2x=12[cosx+cos5x] cos3x·cos2x=cosx2+cos5x2 Related You Might Also Like Table of Angle -Trigonometry formulas October 29, 2021 General Trigonometry Formula October 29, 2021 Euler’s formula -Trigonometry formulas October 29, 2021 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Save my name, email, and website in this browser for the next time I comment. Δ