Inverse Hyperbolic functions – Derivation formulas

Inverse Hyperbolic functions

1. ddxsinh1x=11+x2
2. ddxcosh1x=1x21
3. ddxtanh1x=11x2, |x|\lt1
4. ddxcoth1x=1x21, |x|>1
5. ddxsech1x=1x1x2, 0\ltx\lt1
6. ddxcosec h1x=1x1+x2, x>0

Example 1:

Differentiate y=tanh1(sinx)

Solution:

y=11sin2x·ddx(sinx)
y=11sin2x·cosx
y=cosxcos2x
y=secx

Leave a Reply