# Scales of Measurement

Introduction to Scales of Measurement in Mathematics

Scales of measurement in math are used to classify and/or quantify variables based on certain properties. Each grade of measurement has relevant properties that are crucial to know. Scale of measurement in math is commonly interpreted in the form of graphs. In which it can be described as the mechanism of marks at fixed intervals, which clearly explain the link between the units being used and their illustration on the graph. Data of Measurement scales are basically classified under the four scales of measurement that have frequent applications in statistical analysis:

The 4 types of scales of measurement includes:-

1. Nominal Scale of Measurement

2. Ordinal Scale of Measurement

3. Interval Scale of Measurement

4. Ratio scales Scale of Measurement

Not to Miss the Properties of Measurement Scales

Getting to know about each property of measurement scale is quite imperative to easily master over the mechanism of measurement scales. Each scale of measurement is considered to fulfill one or more of the below mentioned properties of measurement.

1. Magnitude: Values on the scale of measurement have a systematized correlation with one another. In other words, some values are bigger and some are smaller.

2. Equal Intervals: Units of Scale by the side of the scale are equivalent to each other. This implies, for instance, that the difference between 1 and 2 would be equivalent to the difference between 10 and 11.

3. Identity: Each value on the scale of measurement holds a peculiar description.

4. A Minimum Value of Zero: The measurement scale has a true 0 point, further down which no values exist.

Let’s take you through the types of measurement scales in math

Types of Measurement Scales in Mathematics

1. Nominal Scale of Measurement

The nominal type of mathematical measurement scale fulfills solely the identity property of measurement. Values that are fed to variables depict a descriptive classification, but have no innate numerical value when it comes to magnitude.

2. Ordinal Scale of Measurement

The ordinal scale is subjected to both measurement properties of identity and magnitude. Every value on the ordinal measurement scale bears a peculiar meaning, and experience a systematic relationship to each other’s value on the scale.

3. Interval Scale of Measurement

This measurement scale holds the properties of identity, magnitude, and equal intervals.

An exemplary event of an interval scale is the Fahrenheit (° F) scale to measure temperature. The scale is devised of units of equal temperature, so that the difference between 30 °and 40 ° F is equal to the difference between 40 ° and 50 ° F.

4. Ratio Scale of Measurement

The ratio scale is one that fulfills all 4 properties of measurement.

A suitable example of a ratio scale would be the weight of an object. Each value on the weight scale exhibits an eccentric explanation, weights can be grade ordered, units across the weight scale are equivalent to one another, and the scale has to its name a minimum value of zero— reason being, objects at rest can be weightless, but they also disqualify to have negative weight.

Solved Example

Let’s get your theoretical understanding tested practically

Problem 1

Take the Celsius scale for measuring temperature. Which of the given measurement properties is fulfilled by the Celsius scale?

1. Magnitude

2. Equal intervals

3. A minimum value of zero.

(I). A only

(II). B only

(III). C only

(IV). A and B

(V). B and C

Solution1

The correct answer is no. (IV) i.e. A & B.

Firstly, the scale of Celsius bears the magnitude property. This is because each value on the measuring scale can be graded as higher as or smaller than any other respective value. Secondly, it also has the equal intervals property since the scale is composed of equal units.

Nevertheless, the Celsius scale does not fulfill the property of minimum value of zero because water freezes at 0 ° Celsius, but a temperature grows colder than that.

Problem 2

A Recipe to prepare dough for spring rolls uses 4 cups of wheat flour and 3 cups of water

Solution2

Given the proportion of items used,

That brings, the ratio of flour to water – 4: 3

To make spring rolls for over 50 people attending the birthday party, we might require 5 times the quantity, so we multiply the numbers by 5:

Thus, we do

4×5: 3×5 = 20: 15

That is to say, we would need 20 cups of flour and 15 cups of water

Since, the ratio still remains the same, so the spring rolls should be just as delectable.

Fun Facts

• A scale is often referred to as a scale.

• The measuring tool used for calculating the weight of grocery items or body is also called a scale.

• Digital scales are widely available scales around us.