Integration of rational functions
A function or fraction is called rational if it is represented as a ratio of two polynomials. A rational function is called proper if the degree of the polynomial in the numerator is less than the degree of the polynomial in the denominator.
Argument (independent variable): x
Discriminant of a quadratic equation: D
Real numbers: C, a, b, c, p, n
1. Integral of a constant
2. Integral of x
3. Integral of x2
4. Integral of the power function
5. Integral of a linear function raised to nth power
6. Integral of the reciprocal function
7. Integral of a rational function with a linear denominator
8. Integral of a linear fractional function
$$ 9. \ \int \frac {dx}{(x+a)(x+b)} = \frac {1}{a-b} \ln \left \vert \frac {x+b}{x+a} \right \vert +C, \ a \neq b $$
$$ 12. \ \int \frac {dx}{x(a+bx)} = \frac 1a \ln \left \vert \frac {a+bx}{x} \right \vert +C $$
$$ 13. \ \int \frac {dx}{x^2(a+bx)} = – \frac {1}{ax} + \frac {b}{a^2} \ln \left \vert \frac {a+bx}{x} \right \vert +C $$
$$ 16. \ \int \frac {dx}{x(a+bx)^2} = \frac {1}{a(a+bx)} + \frac {1}{a^2} \ln \left \vert \frac {a+bx}{x} \right \vert +C $$
$$ 17. \ \int \frac {dx}{x^2-1} = \frac 12 \ln \left \vert \frac {x-1}{x+1} \right \vert +C $$
$$ 18. \ \int \frac {dx}{1-x^2} = \frac 12 \ln \left \vert \frac {1+x}{1-x} \right \vert +C $$
$$ 19. \ \int \frac {dx}{a^2-x^2} = \frac {1}{2a} \ln \left \vert \frac {a+x}{a-x} \right \vert +C $$
$$ 20. \ \int \frac {dx}{x^2-a^2} = \frac {1}{2a} \ln \left \vert \frac {x-a}{x+a} \right \vert +C $$
$$ 24. \ \int \frac {dx}{a+bx^2} = \frac {1}{\sqrt ab} \tan^{-1} \left( x \sqrt \frac ba \right) +C, \ ab \gt 0 $$
$$ 25. \ \int \frac {xdx}{a+bx^2} = \frac {1}{2b} \ln \left \vert x^2 + \frac ab \right \vert +C $$
$$ 26. \ \int \frac {dx}{x(a+bx^2)} = \frac {1}{2a} \ln \left \vert \frac {x^2}{a+bx^2} \right \vert +C $$
$$ 27. \ \int \frac {dx}{a^2+b^2x^2} = \frac {1}{2ab} \ln \left \vert \frac {a+bx}{a-bx} \right \vert +C $$