Integration of rational functions-Integration Formulas

Integration of rational functions

A function or fraction is called rational if it is represented as a ratio of two polynomials. A rational function is called proper if the degree of the polynomial in the numerator is less than the degree of the polynomial in the denominator.

Argument (independent variable): x

Discriminant of a quadratic equation: D

Real numbers: C, a, b, c, p, n

1. Integral of a constant

adx=ax+C

2. Integral of x

xdx=x22+C

3. Integral of x2

x2dx=x33+C

4. Integral of the power function

xpdx=xp+1p+1+C, p1

5. Integral of a linear function raised to nth power

(ax+b)ndx=(ax+b)n+1a(n+1)+C, n1

6. Integral of the reciprocal function

dxx=ln|x|+C

7. Integral of a rational function with a linear denominator

dxax+b=1aln|ax+b|+C

8. Integral of a linear fractional function

ax+bcx+d=acx+bcadc2ln|cx+d|+C
$$ 9. \ \int \frac {dx}{(x+a)(x+b)} = \frac {1}{a-b} \ln \left \vert \frac {x+b}{x+a} \right \vert +C, \ a \neq b $$
10. dxa+bx=1b2a+bxaln|a+bx|+C
11. x2dxa+bx=1b312(a+bx)22a(a+bx)+a2ln|a+bx|+C
$$ 12. \ \int \frac {dx}{x(a+bx)} = \frac 1a \ln \left \vert \frac {a+bx}{x} \right \vert +C $$
$$ 13. \ \int \frac {dx}{x^2(a+bx)} = – \frac {1}{ax} + \frac {b}{a^2} \ln \left \vert \frac {a+bx}{x} \right \vert +C $$
14. xdx(a+bx)2=1b2ln|a+bx|+aa+bx+C
15. x2dx(a+bx)2=1b2a+bx2aln|a+bx|a2a+bx+C
$$ 16. \ \int \frac {dx}{x(a+bx)^2} = \frac {1}{a(a+bx)} + \frac {1}{a^2} \ln \left \vert \frac {a+bx}{x} \right \vert +C $$
$$ 17. \ \int \frac {dx}{x^2-1} = \frac 12 \ln \left \vert \frac {x-1}{x+1} \right \vert +C $$
$$ 18. \ \int \frac {dx}{1-x^2} = \frac 12 \ln \left \vert \frac {1+x}{1-x} \right \vert +C $$
$$ 19. \ \int \frac {dx}{a^2-x^2} = \frac {1}{2a} \ln \left \vert \frac {a+x}{a-x} \right \vert +C $$
$$ 20. \ \int \frac {dx}{x^2-a^2} = \frac {1}{2a} \ln \left \vert \frac {x-a}{x+a} \right \vert +C $$
21. dx1+x2=tan1x+C
22. dxa2+x2=1atan1xa+C
23. xdxa2+x2=12ln(a2+x2)+C
$$ 24. \ \int \frac {dx}{a+bx^2} = \frac {1}{\sqrt ab} \tan^{-1} \left( x \sqrt \frac ba \right) +C, \ ab \gt 0 $$
$$ 25. \ \int \frac {xdx}{a+bx^2} = \frac {1}{2b} \ln \left \vert x^2 + \frac ab \right \vert +C $$
$$ 26. \ \int \frac {dx}{x(a+bx^2)} = \frac {1}{2a} \ln \left \vert \frac {x^2}{a+bx^2} \right \vert +C $$
$$ 27. \ \int \frac {dx}{a^2+b^2x^2} = \frac {1}{2ab} \ln \left \vert \frac {a+bx}{a-bx} \right \vert +C $$

28. Integral of a rational function with a quadratic denominator (the case of a positive discriminant)

dxax2+bx+c=1b24acln\left|2ax+bb24ac2ax+b+b24ac\right|+C, D=b24ac>0

29. Integral of a rational function with a quadratic denominator (the case of a negative discriminant)

dxax2+bx+c=14acb2tan12ax+b4acb2+C, D=b24ac\lt0

Leave a Reply