General derivative formula

General derivative formula

1. ddx(c)=0, where c is any constant. 1. \ \frac {d}{dx} (c)=0, \ where \ c \ is \ any \ constant.
2. ddxxn=nxn1 2. \ \frac {d}{dx} x^n = nx^{n-1}
3. ddxx=1 3. \ \frac {d}{dx} x=1
4. ddx[f(x)]n=n[f(x)]n1ddxf(x) 4. \ \frac {d}{dx} [f(x)]^n = n[f(x)]^{n-1} \frac {d}{dx} f(x)
5. ddxx=12x 5. \ \frac {d}{dx} \sqrt{x} = \frac {1}{2 \sqrt{x}}
6. ddxf(x)=12f(x)ddxf(x)=12f(x)f(x) 6. \ \frac {d}{dx} \sqrt{f(x)} = \frac {1}{2 \sqrt{f(x)}} \frac {d}{dx} f(x) = \frac {1}{2 \sqrt{f(x)}} f'(x)
7. ddxc·f(x)=cddxf(x)=c·f(x) 7. \ \frac {d}{dx} c \cdot f(x)= c \frac {d}{dx} f(x) = c \cdot f'(x)
8. ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)=f(x)±g(x) 8. \ \frac {d}{dx} [f(x) \pm g(x)] = \frac {d}{dx} f(x) \pm \frac {d}{dx} g(x) =f'(x) \pm g'(x)
9. ddx[f(x)·g(x)]=f(x)ddxg(x)+g(x)ddxf(x) 9. \ \frac {d}{dx} [f(x) \cdot g(x)] = f(x) \frac {d}{dx} g(x) + g(x) \frac {d}{dx} f(x)
10. ddxf(x)g(x)=g(x)ddxf(x)f(x)ddxg(x)[g(x)]2 10. \ \frac {d}{dx} \left[ \frac {f(x)}{g(x)} \right] = \frac {g(x) \frac {d}{dx} f(x) – f(x) \frac {d}{dx} g(x)}{[g(x)]^2}

Example:

Differentiate x5 with respect to x.

Solution:

Given, y = x5

On differentiating w.r.t we get;

dydx=ddx(x)5 \frac {dy}{dx} = \frac {d}{dx} (x)^5
y=5x51=5x4 y’ = 5x^{5-1} = 5x^4
ddx(x)5=5x4 \therefore \frac {d}{dx} (x)^5 = 5x^4

Leave a Reply