General derivative formula Post author:algebra-calculators.com Post published:October 29, 2021 Post category:Derivation formula Post comments:0 Comments General derivative formula 1. ddx(c)=0, where c is any constant. 1. \ \frac {d}{dx} (c)=0, \ where \ c \ is \ any \ constant. 2. ddxxn=nxn–1 2. \ \frac {d}{dx} x^n = nx^{n-1} 3. ddxx=1 3. \ \frac {d}{dx} x=1 4. ddx[f(x)]n=n[f(x)]n–1ddxf(x) 4. \ \frac {d}{dx} [f(x)]^n = n[f(x)]^{n-1} \frac {d}{dx} f(x) 5. ddxx=12x 5. \ \frac {d}{dx} \sqrt{x} = \frac {1}{2 \sqrt{x}} 6. ddxf(x)=12f(x)ddxf(x)=12f(x)f‘(x) 6. \ \frac {d}{dx} \sqrt{f(x)} = \frac {1}{2 \sqrt{f(x)}} \frac {d}{dx} f(x) = \frac {1}{2 \sqrt{f(x)}} f'(x) 7. ddxc·f(x)=cddxf(x)=c·f‘(x) 7. \ \frac {d}{dx} c \cdot f(x)= c \frac {d}{dx} f(x) = c \cdot f'(x) 8. ddx[f(x)±g(x)]=ddxf(x)±ddxg(x)=f‘(x)±g‘(x) 8. \ \frac {d}{dx} [f(x) \pm g(x)] = \frac {d}{dx} f(x) \pm \frac {d}{dx} g(x) =f'(x) \pm g'(x) 9. ddx[f(x)·g(x)]=f(x)ddxg(x)+g(x)ddxf(x) 9. \ \frac {d}{dx} [f(x) \cdot g(x)] = f(x) \frac {d}{dx} g(x) + g(x) \frac {d}{dx} f(x) 10. ddxf(x)g(x)=g(x)ddxf(x)–f(x)ddxg(x)[g(x)]2 10. \ \frac {d}{dx} \left[ \frac {f(x)}{g(x)} \right] = \frac {g(x) \frac {d}{dx} f(x) – f(x) \frac {d}{dx} g(x)}{[g(x)]^2} Example: Differentiate x5 with respect to x. Solution: Given, y = x5 On differentiating w.r.t we get; dydx=ddx(x)5 \frac {dy}{dx} = \frac {d}{dx} (x)^5 y’=5x5–1=5x4 y’ = 5x^{5-1} = 5x^4 ∴ddx(x)5=5x4 \therefore \frac {d}{dx} (x)^5 = 5x^4 Related You Might Also Like Derivative of Exponential Functions-Derivation formulas October 29, 2021 Limits formula – Derivation formulas October 29, 2021 Derivation formula October 29, 2021 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Save my name, email, and website in this browser for the next time I comment. Δ