Gamma functions- beta gamma Formulas

Gamma functions

Gamma function, generalization of the factorial function to nonintegral values, introduced by the Swiss mathematician Leonhard Euler in the 18th century.

The gamma function is defined as

$$ \Gamma(x) = \int\limits_0^{\infty} t^{x-1}e^{-1}dt $$

Properties of Gama function:

$$ 1. \ \Gamma(\alpha+1)= \alpha\Gamma(\alpha) $$
$$ 2. \ \Gamma(n)=(n-1)!, \ \text{for} \ n=1,2,3, \cdots $$
$$ 3. \ \Gamma\left(\frac 12\right)= \sqrt {\pi} $$
$$ 4. \ \Gamma(z)\Gamma(1-z)=\frac {\pi}{\sin z\pi} $$
$$ 5. \ \Gamma(x)\Gamma\left(x+\frac 12\right)= \frac {\sqrt {\pi}}{2^{2x-1}}\Gamma(2x) $$

Example:

$$ \text{Use the properties of Γ to show that} \ \Gamma\left(\frac 32\right)= \frac {\sqrt {\pi}}{2} $$

Solution:

$$ \Gamma\left(\frac 32\right)= \Gamma\left(\frac 12 + 1\right) $$
$$ \Gamma\left(\frac 32\right)=\frac 12\Gamma\left(\frac 12\right) $$
$$ \Gamma\left(\frac 32\right)=\frac {\sqrt {\pi}}{2} $$

Leave a Reply