Factoring – Algebra Formulas

Factoring formulas

Factorization, also known as Factoring, is a process of breaking down a large number into several small numbers. When these small numbers are multiplied, we will get the actual or original number.

1. a2 – b2 = (a + b)(a – b)

Example:

Factor: x2 – 4 y2

Solution:

x2 – 4 y2 = x2 – (2 y)2

x2 – 4 y2 = (x – 2 y)(x + 2 y)

2. a3 – b3 = (a – b)(a2 + ab + b2)

Example:

Factor: 8x3 – 27 y3

Solution:

8x3 – 27y3 = (2x)3 – (3 y)3

= (2x – 3y)[(2x)2 + (2x)(3 y) + (3 y)2 ]

= (2x – 3 y)(4x2 + 6xy + 9y2 )

3. a3 + b3 = (a + b)(a2 – ab + b2)

Example:

Factor: 54x3 + 16 y3

Solution:

54x3 + 16 y3 = 2(27x3 + 8 y3 )

= 2[(3x)3 + (2 y)3 ]

= 2(3x + 2 y)[(3x)2 – (3x)(2 y) + (2 y)2 ]

= 2(3x + 2 y)(9x2 – 6xy + 4 y2)

4. a4 – b4 = (a – b)(a + b)(a2 + b2)

Example:

Factor: 48x4 – 3y4

Solution:

48x4 – 3y4 = 3(16x4 – y4 )

= 3[(4x2)2 – ( y2)2]

= 3(4x2 – y2)(4x2 + y2 )

= 3(2x – y)(2x + y)(4x2 + y 2 )

5.a5 – b5 = (a – b)(a4 + a3b + a2b2 + ab3 + b4 )

6. a5 + b5 = ( a + b)(a4 – a3b + a2b2 – ab3 + b4)

7. If n is odd, then
an + bn = ( a + b)(an-1 – an-2b + an-3b2 – … – abn-2 + bn-1).

8. If n is even, then
an – bn = ( a – b)(an-1 + an-2b + an-3b2 + … + abn-2 + bn-1). an + bn = ( a + b)(an-1 – an-2b + an-3b2 – … + abn-2 – bn-1).

Leave a Reply