Angle transformation -Trigonometry formulas Post author:algebra-calculators.com Post published:October 29, 2021 Post category:Trigonometry formulas Post comments:0 Comments Angle transformation 1. sin(A+B)=sinAcosB+cosAsinB 1. \ \sin(A + B) = \sin A \cos B + \cos A \sin B 2. sin(A−B)=sinAcosB−cosAsinB 2. \ \sin(A − B) = \sin A \cos B − \cos A \sin B 3. cos(A+B)=cosAcosB−sinAsinB 3. \ \cos(A + B) = \cos A \cos B − \sin A \sin B 4. cos(A−B)=cosAcosB+sinAsinB 4. \ \cos(A − B) = \cos A \cos B + \sin A \sin B 5. tan(A+B)=(tanA+tanB)(1−tanAtanB) 5. \ \tan(A + B) = \frac {(\tan A + \tan B)}{(1 − \tan A \tan B)} 6. tan(A−B)=(tanA−tanB)(1+tanAtanB) 6. \ \tan(A − B) = \frac {(\tan A − \tan B)}{(1 + \tan A \tan B)} 6. cot(A+B)=(cotA.cotB–1)(cotB+cotA) 6. \ \cot (A + B) = \frac {(\cot A.\cot B – 1)}{(\cot B + \cot A)} 6. cot(A–B)=(cotA.cotB+1)(cotB–cotA) 6. \ \cot (A – B) = \frac {(\cot A.\cot B + 1)}{(\cot B – \cot A)} Example: Find value ofsin15° \text{Find value of} \sin 15^\circ Solution: sin15°=sin(45°–30°) \sin 15^\circ= \sin (45^\circ – 30^\circ) =sin45°cos30°–cos45°sin30° = \sin 45^\circ \cos 30^\circ – \cos 45^\circ \sin 30^\circ =12×32–12×12 = \frac {1}{\sqrt {2}} \times \frac {\sqrt {3}}{2} – \frac {1}{\sqrt {2}} \times \frac {1}{2} =322–122 = \frac {\sqrt {3}}{2 \sqrt {2}} – \frac {1}{2 \sqrt {2}} =3–122 = \frac {\sqrt {3}-1}{2 \sqrt {2}} Example: Find value ofsin75° \text{Find value of} \sin 75^\circ Solution: sin15°=sin(45°+30°) \sin 15^\circ= \sin (45^\circ + 30^\circ) =sin45°cos30°+cos45°sin30° = \sin 45^\circ \cos 30^\circ + \cos 45^\circ \sin 30^\circ =12×32+12×12 = \frac {1}{\sqrt {2}} \times \frac {\sqrt {3}}{2} + \frac {1}{\sqrt {2}} \times \frac {1}{2} =322+122 = \frac {\sqrt {3}}{2 \sqrt {2}} + \frac {1}{2 \sqrt {2}} =3+122 = \frac {\sqrt {3}+1}{2 \sqrt {2}} Related You Might Also Like Euler’s formula -Trigonometry formulas October 29, 2021 Half/Double/Multiple angle formula October 29, 2021 Table of Angle -Trigonometry formulas October 29, 2021 Leave a Reply Cancel replyCommentEnter your name or username to comment Enter your email address to comment Enter your website URL (optional) Save my name, email, and website in this browser for the next time I comment. Δ